Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(23)2022 Dec 04.
Article in English | MEDLINE | ID: covidwho-2143191

ABSTRACT

Nonpharmaceutical policies for epidemic prevention and control have been extensively used since the outbreak of COVID-19. Policies ultimately work by limiting individual behavior. The aim of this paper is to evaluate the effectiveness of policies by combining macro nonpharmaceutical policies with micro-individual going-out behavior. For different going out scenarios triggered by individual physiological safety needs, friendship needs, and family needs, this paper categorizes policies with significant differences in intensity, parameterizes the key contents of the policies, and simulates and analyzes the effectiveness of the policies in different going-out scenarios with simulation methods. The empirical results show that enhancing policy intensity can effectively improve policy effectiveness. Among different types of policies, restricting the times of going out is more effective. Further, the effect of controlling going out based on physiological safety needs is better than other needs. We also evaluate the policy effectiveness of 26 global countries or regions. The results show that the policy effectiveness varies among 26 countries or regions. The quantifiable reference provided by this study facilitates decision makers to establish policy and practices for epidemic prevention and control.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/prevention & control , Health Policy , Policy Making , Disease Outbreaks
2.
Int J Environ Res Public Health ; 19(13)2022 07 01.
Article in English | MEDLINE | ID: covidwho-1917470

ABSTRACT

Accurately predicting the number of severe and critical COVID-19 patients is critical for the treatment and control of the epidemic. Social media data have gained great popularity and widespread application in various research domains. The viral-related infodemic outbreaks have occurred alongside the COVID-19 outbreak. This paper aims to discover trustworthy sources of social media data to improve the prediction performance of severe and critical COVID-19 patients. The innovation of this paper lies in three aspects. First, it builds an improved prediction model based on machine learning. This model helps predict the number of severe and critical COVID-19 patients on a specific urban or regional scale. The effectiveness of the prediction model, shown as accuracy and satisfactory robustness, is verified by a case study of the lockdown in Hubei Province. Second, it finds the transition path of the impact of social media data for predicting the number of severe and critical COVID-19 patients. Third, this paper provides a promising and powerful model for COVID-19 prevention and control. The prediction model can help medical organizations to realize a prediction of COVID-19 severe and critical patients in multi-stage with lead time in specific areas. This model can guide the Centers for Disease Control and Prevention and other clinic institutions to expand the monitoring channels and research methods concerning COVID-19 by using web-based social media data. The model can also facilitate optimal scheduling of medical resources as well as prevention and control policy formulation.


Subject(s)
COVID-19 , Social Media , COVID-19/epidemiology , Communicable Disease Control , Humans , Infodemic , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL